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Abstract. The process e+e− → ν̄ee
−W+ → ν̄ee

−ud̄ is considered as an example of the problems associated
with maintaining gauge invariance in matrix elements involving unstable particles. It is shown how to
construct a matrix element that correctly treats width effects for the intermediate unstable W boson
and that is both SU(2)L and U(1)e.m. gauge-invariant. SU(2)L gauge-invariance is maintained by Laurent
expansion in kinematic invariants and U(1)e.m. gauge-invariance is enforced by means of projection operator
under which the exact matrix element is invariant.

1 Introduction

In recent years the difficulty and importance of producing
exactly gauge-invariant amplitudes for processes involv-
ing unstable particles has come to be appreciated. Prior
to 1991 all calculations of electroweak physics at the Z0

resonance, and even the definition of MZ , were gauge-
dependent. A variety of techniques have been applied to
try to remove explicit gauge-dependence. Some of these
involve the generation of gauge-invariant Green’s func-
tions, such as self-energies and vertex corrections [1–3].
Such techniques however replace dependence on, say, the
gauge parameter by some arbitrary choice in the defini-
tion of the Green’s function. In the case of the so-called
‘pinch technique’ the procedure used may be justified by
the background field method [4,5] for a particular choice of
the gauge parameter, ξ. The fact that a particular choice
is involved raises questions as to whether the gauge de-
pendence has been removed or merely disguised.

A method for producing genuinely gauge-invariant am-
plitudes at all orders in perturbation theory is that of Lau-
rent expansion as proposed in [6,7]. This method starts
from the general structure of the exact physical S-matrix
element for the process under consideration. A Laurent
expansion then decomposes this expression into resonant
and non-resonant pieces that must be separately gauge-
invariant provided the initial physical matrix element is.
The question of whether this process always leads to re-
sults with good high-energy behaviour, as is apparently
the case for the process considered here, requires further
study and has been discussed in [8]. In [9] it was pointed
out that the expansion was not just a mathematical trick.
The leading resonant term in the expansion represents
the finite propagation and subsequent decay of a physi-
cal unstable particle. As such it constitutes a distinguish-
able physical process and therefore must be exactly gauge-
invariant. This insight was used to give an answer to the
long-standing problem of how to calculate production

cross-sections for unstable particles and was applied to
the process e+e− → Z0Z0.

The presence of an unstable particle is indicated by a
finite propagation length separating production and decay
vertices. The contributions responsible for finite propaga-
tion are just those that are resonant in the invariant mass
of the decay products. Thus, for example, to calculate the
cross-section e+e− → Z0Z0 one calculates the matrix el-
ement for the process e+e− → Z0Z0 → (f1f̄1)(f2f̄2) and
extracts the part resonant in the invariant masses, p2

1 and
p2
2, of the (f1f̄1) and (f2f̄2) pairs respectively. This is ac-

complished by means of a Laurent expansion in each of
the variables p2

1 and p2
2. In the notation of [10] the general

matrix element for the process takes the form

M(..., p1, p2, ...)

=
∑

i

li(..., p1, p2, ...)Ai(t, u, p2
1, p

2
2) (1)

where the li are ‘standard covariants’, with external wave-
functions attached, that form a basis for the spinor and
Lorentz tensor structure of the matrix element. They there-
fore transform as M does. The Ai are Lorentz scalar func-
tions of the independent Lorentz invariants of the problem
and contain no kinematic singularities. The resonant part
is extracted by taking the leading terms Âi in a Laurent
expansion first in p2

1 and then p2
2.

The cross-section formed from the resonant parts

M̂(..., p1, p2, ...)

=
∑

i

li(..., p1, p2, ...)Âi(t, u, p2
1, p

2
2) (2)

or in this case doubly resonant parts, of the matrix element
and then summed over all possible final states constitutes
the cross-section σ(e+e− → Z0Z0). If the standard co-
variants, li, do form a basis then the scalars Ai will be
gauge-invariant and hence so will the Âi.
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The external particle wave functions do not feature in
the expansion process hence the kinematics of the problem
are unchanged and momentum conservation is preserved
throughout. The final state integrations involve only sta-
ble on-shell particles and so things like complex scattering
angles that have plagued certain other attempts at cal-
culating such cross-sections do not arise. Problems near
‘threshold’ that have been noted elsewhere [11,12] do not
appear. This is as expected since unstable particles do not
exhibit sharp thresholds as do stable ones. Branch points
corresponding to their production lie off the real axis and
such threshold problems must be calculational artifacts.
Because matrix elements are always evaluated with exter-
nal stable states they remain gauge-invariant throughout.
As guaranteed by Fredholm theory, there will be an ex-
act factorization between the final state decay products of
the unstable particle and the rest of the matrix element.
Because of this exact factorization, the cross section takes
the form

σ(s) =
∫ s

0
dp2

1

∫ (
√

s−
√

p2
1)

2

0

×dp2
2σ(s; p2

1, p
2
2) ρ(p2

1) ρ(p2
2), (3)

where σ(s; p2
1, p

2
2) is the cross-section obtained from the

resonant part of the matrix element alone and

ρ(p2) ≈ 1
π

.
p2(ΓZ/MZ)

(p2 − M2
Z)2 + Γ 2

ZM2
Z

θ(p0)θ(p2)

is Breit-Wigner-like convolution function.
In [13] the process e+e− → ν̄ee

−W+ → ν̄ee
−ud̄ is

treated as an example of how to include width-effects
in matrix elements involving unstable particles. Much is
made of electromagnetic U(1)e.m. gauge invariance and
the possibility that the large mass ratio s/m2

e present in
this process might amplify uncancelled gauge-dependence
to a disastrous level [14,15]. In particular it is shown that
gauge invariance guarantees that the cross-section behaves
as ∼ q−2 as q2 → 0 and not ∼ q−4 as it might otherwise
do. However the question of how to simultaneously main-
tain SU(2)L and U(1)e.m. gauge invariance in calculations
that take account of W boson width effects is not consid-
ered. The approach advocated is to include a subset of
higher-order corrections to restore U(1)e.m. gauge invari-
ance as was done in [16,17]. This procedure is however
inconvenient, difficult to apply consistently and adds con-
siderably to the calculational labour involved. As noted in
[13] the reparation scheme is arbitrary.

More recently the above method has been extended to
encompass all diagrams containing a single fermion loop
[18]. This represents a complete self-consistent
O(Nfα) calculation where Nf is the number of fermions.
However it is also known that this approach cannot main-
tain SU(2)L gauge-invariance when 1-loop bosonic correc-
tions are included. This can be especially serious at high
energies where strong unitarity cancellations occur.

It may be commented that the use of next order di-
agrams to fix problems at a given order for processes in-
volving unstable particles has been noted elsewhere [19].

In that case troublesome imaginary parts of counterterms
were observed to be canceled by next order diagrams.

2 Gauge invariance for massless particles

When massless gauge particles are present special prob-
lems arise. Suppose we were to write a Green’s function
Gµ with a photon leg in terms of some basis of standard
covariants, lµi , and Lorentz scalars, Ai, in a form analogous
to (1) and (2),

Gµ(p1, p2, ...)

=
∑

i

lµi (p1, p2, ...)Ai(p2
1, p

2
2, ...). (4)

The lµi , of course, must transform in the same way that
Gµ does. There is a certain amount of freedom as to what
to include in the standard covariants, lµi , and what in the
Lorentz scalars, Ai, but, provided one incorporates all an-
alytic dependence on the expansion variable in the Ai’s
and does not introduce artificial singularities, the final re-
sults for physical observables cannot be affected.

The gauge condition on Green’s functions qµGµ = 0
means that the Ai are not linearly independent since they
satisfy the condition

∑
i(q · li)Ai = 0 where qµ is the

momentum of the photon leg.
Gauge-invariant Green’s functions can be obtained us-

ing the methods of Bardeen and Tung [10]. Suppose that
we have some exact Green’s function expressed in terms
of standard covariants and Lorentz scalars as in (4). Since
qµGµ = 0 the Green’s function is invariant under of the
action of the operator

Iµ
ν = gµ

ν − pµqν

p · q
(5)

where p is some conveniently chosen momentum. The spi-
nor-Lorentz tensor structure of the Green’s function is
spanned by the set {Iµ

ν lνi }. That is

Gµ(p1, p2, ...)

=
∑

i

(Iµ
ν lνi (p1, p2, ...))Ai(p2

1, p
2
2, ...). (6)

For an approximate Green’s function that does not satisfy
the U(1)e.m. gauge-condition, the operator Iµ

ν serves as a
projection operator onto {Iµ

ν lνi }. From the {Iµ
ν lνi } it is

always possible to construct a new basis that is free of
kinematic singularities that might have occurred when,
for example, (p · q) = 0.

In general consider a Green’s function Gµ calculated
using some incomplete expansion up to some order. It will
consist of two parts

Gµ = Gµ
0 + Gµ

1 (7)

where Gµ
0 is a consistent gauge-invariant contribution cor-

rect to the given order of the calculation. Gµ
1 is a spurious

higher-order gauge-dependent correction. Because Gµ
0 sat-

isfies the gauge condition, qµGµ
0 = 0, it is invariant under
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Fig. 1. Tree-level diagrams contributing to the resonant part
of the process e+e− → ν̄ee

−W+ → ν̄ee
−ud̄

the action of the operator Iν
µ . Thus at a given order we

may make the replacement

Gµ → Iµ
ν Gν = Gµ

0 + Iµ
ν Gν

1 .

Only Gµ
1 is affected by the projection operator but since

it is of higher order this is of no concern. The impor-
tant point is that it now satisfies the gauge condition
qµ(Iµ

ν Gν
1) = 0 and is prevented from causing too strong a

numerical blow up as q2 → 0.

3 The process e+e− → ν̄ee−W+ → ν̄ee−ud̄

Consider the process e+e− → ν̄ee
−W+ → ν̄ee

−ud̄. The
tree level diagrams contributing to this process are shown
in Fig. 1. In the kinematic regions where the process is al-
lowed (but W+W− production is forbidden) it is expected
to be dominant because of the presence of a resonant W
propagator. We will mainly concern ourselves with the re-
gion with q2 small but the methods used apply in any
kinematic region and will yield results that are exactly
SU(2)L and U(1)e.m. gauge-invariant order by order.

Let q be the 4-momentum of the virtual photon and p+
be that of the W+. The momenta of the incoming electron
and positron are p1 and and k1 respectively and p2 and
k2 are those of the outgoing electron and ν̄e. Hence

p+ = pu + pd, p− = k1 − k2,

q = p1 − p2. (8)

MW is the W mass, e and g are the electromagnetic and
SU(2)L weak coupling constants respectively. Qi is the
electric charge of particle i. As usual γL = 1

2 (1−γ5) is the
left-handed helicity operator.

Using the same notation as in the introduction the
exact matrix element takes the form

M =
∑

i

li(q, p+, ...)Ai(q2, p2
+, ...) (9)

This matrix element may be divided into a part that has
a simple pole at q2 = 0 and a part that has no pole

M =
∑

i

li(q, p+, ...)
Ri(0, p2

+, ...)
q2 (10)

+
∑

i

li(q, p+, ...)
Ri(q2, p2

+, ...) − Ri(0, p2
+, ...)

q2 .

These terms must be separately SU(2)L gauge-invariant
because their differing pole structures. The first term re-
ceives contributions from diagrams, such as those of Fig. 1,
in which a photon is connected to the external electron
current. The second term receives contributions from these
as well many other topologies. Examples are the diagrams
of Fig. 1 in which the photon is replaced by a Z0 boson.

We will be interested in the small q2 region and will
thus concentrate on the first term in (10) and write

M =
∑

i

Jγ
µ (l′i)

µ(q, p+, ...)R′
i(0, p2

+, ...) (11)

where

Jγ
µ =

Vγ(0)
[1 − Π ′

γγ(0)]
1
2
.
ū(p2)γµu(p1)

q2 . (12)

The (l′i)
µ(q, p+, ...) are standard covariants with attached

external wavefunctions and Vγ(q2) is the γe+e− vertex
form-factor. Π ′

γγ(q2) is the derivative of the photon self-
energy with respect to q2. This expression ignores Z-γ
mixing that has the effect of modifying the overall mul-
tiplicative factor and may be included using the methods
of [7]. The factorization of the matrix element in this way
is guaranteed by Fredholm theory. Moreover the resulting
factors must be separately gauge-invariant [7]. This is im-
portant for ensuring that the subsequent insertion of the
projection operator, Iµ

ν , into the photon leg does not gen-
erate gauge-dependent terms. Since M is U(1)e.m. gauge
invariant it is possible to find a set {(l′i)

µ(q, p+, ...)} that is
free of kinematic singularities and that satisfy qµ(l′i)

µ(q, p+, ...)
= 0 [10].

From the part of the matrix element (11) we wish to
extract the dominant resonant part of the matrix element
that describes the production of a physical W+ and its
subsequent decay into the ūd final state. As with the pro-
cess e+e− → Z0Z0 this is the leading term in a Laurent
expansion of Ri(0, p2

+, ...) in p2
+, the invariant mass of the

W+ decay products. The result takes the form

M =
∑

i

Jγ
µJW

α (l′′i )µα(q, p+, ...)R′′
i (0, sW , ...) (13)

where

JW
α =

VW (sW )
[1 − Π ′

WW (sW )]
1
2
.
ū(pu)γαγLv(pd)

p2
+ − sW

(14)

Here Π ′
WW (q2) is the derivative of the W self energy

with respect to q2 and sW the solution of p2
+ − M2

W −
ΠWW (p2

+) = 0. VW (p2
+) is the W+ud̄ vertex form factor.

The result (13) is exactly SU(2)L and U(1)e.m. gauge-
invariant.

Since the (l′′i )µα(q, p+, ...) are U(1)e.m. gauge-invariant
they are invariant under the action of projection operators
of the form given in (5).

In finite order calculations, because of the non-pertur-
bative nature of the W+ resonance, U(1)e.m. gauge-inva-
riance may not be satisfied. A gauge-invariant result may
be obtained by inserting a projection operator, Iµ

ν , as de-
fined in (5). This has the effect of discarding spurious
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gauge-dependent terms that must ultimately cancel in the
final result thus avoiding the need to calculate higher-
order diagrams as was done in [13,16].

With these general considerations in mind we can now
calculate the cross-section for the process σ(e+e− → ν̄ee

−
W+ → ν̄ee

−ud̄) in leading order and with the W width
effects correctly taken into account. In words this is the
production cross-section for e−ν̄e and a physical W+ that
subsequently decays into a ud̄ pair.

As discussed above the contribution relevant as q2 → 0
takes the form

M = MµαJγ
µJW

α . (15)

in which

Mµα =
2∑

i=1

Mµα
i . (16)

The Mµα
i correspond to the two diagrams of Fig. 1,

Mµα
1 = ie

g√
2
QW

1
p2− − M2

W

V αβµ(p+,−p−,−q)

×v̄(k1)γβγLv(k2), (17)

Mµα
2 = ie

g√
2
Qev̄(k1)γµ /k1 + /q

(k1 + q)2
γαγLv(k2). (18)

and

V µ1µ2µ3(p1, p2, p3) = (p1 − p2)µ3gµ1µ2 + (p2 − p3)µ1gµ2µ3

+(p3 − p1)µ2gµ3µ1 . (19)

Note that at this order the vertices do not depend on q2

or p2
+. Thus the second term in (10) is absent. As noted

earlier there is some freedom of choice as to what to assign
to Lorentz covariants and what to Lorentz scalars. At this
order the issue barely arises and we may simply choose
Ri = 1 and include everything else in the li’s.

The projection operator Iµ
ν of (5) may be inserted into

(15) in order to guarantee U(1)e.m. gauge invariance of the
Green’s function, Mµα. The matrix element then becomes

M = MµαIλ
µJγ

λJW
α . (20)

The matrix element squared and averaged over spins
then takes the form〈|M|2〉 =

1
4

∑
e+e− spins

MµαIλ
µJγ

λ

×
(

gαβ − (p+)α(p+)β

p2
+

)
ρ(p2

+)MνβIρ
ν Jγ

ρ (21)

with(
gαβ − (p+)α(p+)β

p2
+

)
ρ(p2

+)

=
∑

ud̄ spins

∫
d3pu

(2π)32p0
u

d3pd

(2π)32p0
d

JW
α JW

β (2π)4

×δ4(pu + pd − p+)θ(p0
+)θ(p2

+)

=
g2

48π2 .
p2
+

|p2
+ − sW |2

(
gαβ − (p+)α(p+)β

p2
+

)
θ(p0

+)θ(p2
+)

(22)

at leading order. The entire effect of the Laurent expan-
sion at this order is encapsulated in the function ρ(p2

+).
At higher orders the Laurent expansion will require that
vertex form factors be evaluated with complex arguments.

In forming the total production cross-section for a phys-
ical W+’s that subsequently decays into ud̄ we must sum
over the ud̄ final states. Hence

σ(e+e− → ν̄ee
−W+ → ν̄ee

−ud̄)

= Nc

∫
dp2σ(p2)ρ(p2). (23)

The integral is over the full range allowed by the cut on
the scattering angle, θ. Nc is the number of QCD colours
and

σ(p2) =
1
2s

∫
d3p2

(2π)32p0
2

d3k2

(2π)32k0
2

d3p+

(2π)32p0
+

〈|M0|2
〉

×(2π)4δ4(p1 + k1 − p2 − k2 − p+) (24)

in which〈|M0|2
〉

=
1
4

∑
e+e− spins

MµαIλ
µJγ

λ

×
(

gαβ − (p+)α(p+)β

p2
+

)
ρ(p2

+)MνβIρ
ν Jγ

ρ (25)

and the integral is evaluated under the constraint that
p2
+ = p2. Because MµαIλ

µ is U(1)e.m. gauge-invariant,〈|M0|2
〉 ∼ q−2 as q2 → 0.
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